
Creating a Comparative Environment for PIM Evaluation

Karl Voit
Institute for Software

Technology (IST)
Graz University of Technology
Karl.Voit@IST.TUGraz.at

Keith Andrews
Institute for Information

Systems and Computer Media
(IICM)

Graz University of Technology
kandrews@iicm.edu

Wolfgang Slany
Institute for Software

Technology (IST)
Graz University of Technology
Wolfgang.Slany@tugraz.at

ABSTRACT
A common form of comparative evaluation in current research is to
run a formal experiment with a number of test users and software
implementations of two or more underlying research approaches.
When the underlying methods are, in fact, the subject of the com-
parison, it is essential for fair comparison that their software im-
plementations and interface usability be of equivalent quality. Pre-
vious work on evaluating information visualisation techniques can
inform such evaluations in the area of human-computer informa-
tion retrieval. A research framework called tagstore supports ex-
periments on different styles of tagging interfaces. It can also be
used for experiments involving the storing and re-finding of per-
sonal files using either folder hierarchies or tagging. The tagstore
framework provides a basis for comparable results, flexible control
of appearance and functionality, and multi-platform availability.

Categories and Subject Descriptors
H.5 [Information Interfaces and Presentation]: User Interfaces

Keywords
personal information management, information retrieval systems,
file storage, hierarchical structures, dynamic structures, tagging,
faceted search

1. INTRODUCTION
A commonly used evaluation method in areas like Personal Infor-
mation Management (PIM), Information Retrieval (IR), and Human-
Computer Interaction (HCI) research is comparative evaluation by
conducting a formal user study. Typically, test users are asked to
accomplish tasks using two or more software interfaces. Objective
and subjective data are collected and analysed. Researchers of-
ten seek to draw conclusions regarding the underlying techniques,
methods, or algorithms, which lie beneath the software interface.

Unfortunately, in some studies, the software used for comparison
is often written by different groups, to different standards, and us-
ing differing developmental resources. Hence, the quality of the

software implementation might well influence the outcome of the
experiment and lead to conclusions which are not valid.

Figure 1 illustrates the fundamental problem: the interface layer is
necessary for any software implementation of a method. In formal
experiments, positive or negative effects due to differences in the
implementation layer are often neglected.

2. RELATED WORK
Kobsa [10] compared five different information visualisation tech-
niques for navigating in hierarchies with Windows Explorer. The
software for each technique was provided by the originating re-
search group. The implementations of the methods vary in quality,
usability, feature set, target applications, degree of maturity, and in
the case of Windows Explorer clearly in user familiarity. Hence,
the findings are highly dependent on the implementation differ-
ences and not solely in the methods used to visualize the data. As
the author concedes: “the extreme outliers in the Tree Viewer and
BeamTrees data have mostly been caused by a lack of functionality
beyond the pure visualization.” When using software tools from
completely different sources, almost any result is dependent on the
implementation layer to a large extent.

The comparative study described by Andrews and Kasanicka [4]
used four different information visualisation techniques. However,
the various techniques were deliberately re-implemented by the
same research group within a single framework, in an attempt to
control for the quality of implementation.

Munzner [14] explicitly distinguishes four levels of evaluation or
validation in the context of information visualisation systems: 1)
domain problem characterisation (addressing the wrong issue), 2)
data abstraction design (choosing the wrong abstraction), 3) inter-
action design (poor usability) and 4) algorithm design (inefficient
implementation). It is argued that each level, including the usability
and implementation levels, must be validated in and of itself, using
the appropriate techniques at each level. This question of when to
use which evaluation technique was also previously addressed by
Andrews [3, 2].

The previous examples were from the field of information visual-
isation. Turning to the fields of PIM and HCIR, Civan et al. [7]
looked into the question as to whether browsing (hierarchical struc-
tures) or tagging is more efficient for storing and re-finding infor-
mation. An experiment was constructed using two different web-
based email systems: Hotmail and Gmail. The general assump-
tion was that the main difference between those two systems are
that Hotmail uses folders and Gmail uses tags to organise emails.



Test Users

Interface A

Interface B

Method A

Method B

Not valid

(a) Test users taking part in a formal experiment are typically
asked to complete tasks on a number of alternative interfaces.
Their relative performance is then statistically compared. How-
ever, in general, it is risky to draw conclusions about underlying
methods, without first ensuring that their implementations are of
equivalent quality.

Test Users

Interface A Interface C

ValidMethod A Method C

(b) When indirectly testing two methods through the same
or equivalent interfaces, it is more reasonable to draw con-
clusions about the underlying methods. The implementa-
tions have to be of comparable quality and the featureset
should differ only in things that are subject of the experi-
ment.

Figure 1: When evaluating two methods using formal experiments, the experimental design has to provide for comparable interfaces.

“Most differences between these systems” were considered “minor
and could be overlooked by participants for the purpose of [the]
study”. Besides the fact that Hotmail and Gmail are two different
interfaces hardly comparable, the tested version of Hotmail did not
have a representation of folders that meets common definitions of
“folders”: there was no possibility to create sub-folders and every
given folder was visible all the time. Navigation is unnecessary,
since Hotmail’s “implementation of folders” is closer to “tagging
with only one tag per email” than using hierarchical folder struc-
tures. Hence, the results of this study are not applicable at least for
systems that provide navigational folder structures.

Another study which tried to answer a similar research question
was described in [15]. The second study described in that paper was
done using a self-implemented software, which differed only in one
single feature: storing and re-finding photographs using either tags
or folders. This study controls for implementation variability and
permits much better generalisation of the results to the underlying
methods: folders versus tags. Unfortunately, there were also some
issues in the study which limit more general application of the re-
sults: items were digital photographs only, sub-folders were visible
all the time without any possibility to collapse sub-trees, and the
tagging process lacked commonly provided features, such as tag
completion and tag recommendations.

Ideally, software being used for a comparative study should be de-
signed so as to eliminate any differences in interface or implemen-
tation and hence facilitate the application of any results to the un-
derlying methods, as shown in Figure 1(b).

3. TAGSTORE: A RESEARCH FRAME-
WORK FOR TAGGING INTERFACES

To investigate the best way to design a tagging interface for per-
sonal information management, a research framework called tag-
store was built [18, 20]. Previous work discussed requirements for
user acceptance of PIM systems [19]. All of these requirements are
implemented in tagstore. In relation to user studies, tagstore fo-
cuses on providing the best possible usability, compatibility with

the current software environments, multi-platform availability, and
test users needing no advanced computer knowledge.

Inside the framework, tags are mapped to the file system as follows:
for any given file or folder (item) added to tagstore, the system au-
tomatically generates navigational folder and link structures called
TagTrees. Within a TagTree, every permutation of tags assigned to
a particular item is stored as a navigational folder path. Each folder
along a path represents a specific tag for one or more items and con-
tains symbolic links to the original items. The items themselves are
stored in a separate central storage folder. Users navigate a TagTree
by selecting one tag at each step along the way. All permutations
of tags are provided, so users may select tags in any desired order.
Item renaming or deletion automatically results in updates of the
TagTrees correspondingly.

TagTrees provide associative navigation paths. Therefore the do-
main of tagstore is navigation and not search. Navigation is the
preferred method of information re-finding as studies like [1, 17, 5,
6] show. Using navigation, users do not have to formulate queries
and are able to re-find files they already forgot. Desktop search en-
gines are an additional method to locate (known) files. This frame-
work covers storing and re-finding of information provided within
files or folders only. But the general method can be adopted to other
systems as well.

If a file called Ideas.txt is stored in tagstore with a number
of n = 3 tags – “Project”, “important”, and “Bob” – then the six
generated navigation paths comprising the TagTree are: Proj-
ect/important/Bob, Project/Bob/important, impor-
tant/Project/Bob, important/Bob/Project, Bob/im-
portant/Project, and Bob/Project/important respec-
tively. In each (sub-)folder, the user finds a link to Ideas.txt
resulting in n×n! additional links to the item. The deeper the user
navigates, the fewer links to other items are visible, and the more
detailed the implicit “query” becomes.

Similar ideas of mapping navigational structure elements into the
file system can be found in Mohan et al. [13] and Gifford et al. [8].



(a) The tagstore dialog window. The user is assigning
tags to the file Bobs Vacation Plan.txt. At the
top is the list of untagged files in the current store. At
the bottom is the tagline showing two entered tags and
beneath it are three tag suggestions in blue.

(b) Windows Explorer showing the automatically generated
TagTree navigational structures: folder structures in the file system
are generated to correspond to every permutation of all tags assigned
to an item. These can then be navigated using standard tools like
Windows Explorer.

Figure 2: The tagstore tagging process with one tagline and a free vocabulary.

The TagTrees method is neutral to semantics and can be imple-
mented without any relational database management system or spe-
cial in-between file system layer.

To store an item in a TagTree structure, the item has to be copied,
moved or saved to the central storage folder. This folder should
be known to and easily reachable by the user. An application-
independent tagging dialog automatically appears and allows the
user to enter appropriate tags for the item.

This approach has many advantages. Most of all – at least for re-
finding – the user has access to additional functionality without
an additional interface. The TagTree structure can be navigated
with any current file management application, in every file Open
or Save dialog window, and with both GUI-based applications and
command-line tools. Any given backup process is unaffected, users
handle their files as usual and retain confidence in the integrity of
their data.

Figure 2(a) shows the tagging dialog. This dialog appears when-
ever an item is placed in the central storage folder. Entering
tags is designed to be as easy and as fast as possible. A recom-
mender system proposes tags which might be helpful to the user
in the current context. Autocompletion is provided for previously
used tags. Multiple items with the same tags can be tagged in one
step, and previously entered tags are the default tags in the next
tagging dialog. When the user finishes tagging, TagTrees related to
the item are created. Figure 2(b) shows a partly expanded view of
TagTrees in Windows Explorer.

The current implementation of tagstore has some technical limita-
tions: the number of inodes1 is limited. Due to the exponential

1The smallest information chunks file systems can handle.

growth of folders and links inside a TagTree structure, many items
with many tags per item result in a large number of inodes being
used in the current hard disk partition. This results in a reasonable
upper bound of a few thousand items per tagstore2. For research
purposes, this limitation is acceptable, since a few thousand items
are sufficient for most experimental situations.

For performance reasons, the number of tags per item is limited to
six or seven, depending on the hardware and operating system3. As
other studies have shown, users very seldom assign more than five
tags per item [9, 15]. In longer term field tests of tagstore, users
were hardly ever shown the warning message related to this limit.

4. USING TAGSTORE FOR RESEARCH
For researchers conducting an experiment, tagstore offers a wide
range of possibilities to change appearance and behavior, it can
be used in multi-language (currently, English and German) exper-
iments, and its open source licence (GNU GPL v3) allows it to be
freely enhanced or expanded. All data and configuration settings
are stored in easily parsable plain text files. Finally, tagstore is
available for all three major operating systems: Microsoft Win-
dows (Vista or newer), Mac OS X, and Debian GNU/Linux based
distributions like Ubuntu.

Körner et al. [11] introduces the concept of dividing users of tags
into describers and categorisers. tagstore allows a second tagline
to be configured. Thus, one tagline can be used for descriptive tags
and the second tagline for category tags. With two distinct taglines,

2Users are able to create and use several tagstores in parallel: for
example one store each for work, photographs, and miscellany.
3Solid State Disks (SSD) are much more faster than standard hard
drives; symbolic links (GNU/Linux and Mac OS X) are faster than
the shortcuts used by Microsoft Windows.



Test Users

Windows Explorer Windows Explorer + tagstore

ValidStandard Folders TagTrees

Figure 3: For experiments where tagging versus filing into traditional folder structures is the subject, tagstore – as an additional
implementation extending the traditional Windows Explorer interface – introduces only one dialog window that handles the tag
assignment. The underlying method of re-finding items does not differ (in terms of interface) at all. TagTrees are accessed by
Windows Explorer (or similar tools) and provide associative navigation to items rather than remembering storage paths in a strict
hierarchy.

a comparative study can be run to assess their relative use.

tagstore supports the use of a controlled vocabulary (CV) for the
set of tags. This is called “My Tags” and can be maintained in
the tagstore Manager. The use of a CV is a common method to
avoid problems with homonyms, synonyms, and plurals. Again,
comparative studies can be formulated to compare the use or non-
use of a controlled vocabulary.

Date stamps can be configured as default tags in tagstore (added au-
tomatically). Furthermore, it is possible to explicitly define expiry
dates for each item. As Mayer-Schönberger [12] suggests, expiry
dates allow for promising PIM research and could help in alleviat-
ing information overload.

Finally, researchers might use tagstore to conduct studies compar-
ing the use of folder structures to the use of tagging. Although
the assignment of tags in tagstore involves the use of a custom
dialog window, navigation through TagTree structures is accom-
plished with exactly the same Explorer-like tree browser interface
used to navigate and maintain folder hierarchies. Hence, for this
kind of experiment, tagstore provides a “minimally invasive” en-
vironment using the very same, well-known hierarchy browsing
interface. This ensures that results of experiments are being able
to compared to classical re-finding tasks using navigating in strict
hierarchies of folders as Figure 3 outlines.

5. CONCLUDING REMARKS
Comparing methods using software implementations is not easy
to do. Implementation differences, independent of the underly-
ing methods, can be the reason for incomparable results. The tag-
store research framework provides a rich set of equivalently imple-
mented features for researchers to run experiments around tagging
interfaces. It can also be used to compare tagging to browsing in
folder hierarchies.

Possible future enhancements include: alternative structures for
TagTrees such as those proposed by Solskinnsbakk and Gulla [16],
the introduction of semantic information, different styles of tagging
window, alternatives to TagTree navigation in an browser, cross-
platform studies, and so on.

Two formal experiments were conducted using the tagstore frame-
work. Preliminary results show a more diverse picture than previ-
ous studies in this field. The detailed findings from these experi-
ments will be published in forthcoming papers. Complete data sets
will also be published in the spirit of the Open Science movement4.
Additionally, a field test is being developed to examine the long
term effects of using a PIM tool which provides associative navi-
gation. In the field test, test users will be able to use tagstore over
an extended period of time with their own data and their own use
cases.

6. REFERENCES
[1] C. Alvarado, J. Teevan, M. S. Ackerman, and D. Karger.

Surviving the information explosion: How people find their
electronic information. AI Memo AIM-2003-006, MIT AI
Laboratory, Department of Computer Science, 2003.
http://hdl.handle.net/1721.1/6713.

[2] K. Andrews. Evaluating Information Visualisations. In Proc.
AVI 2006 Workshop on Beyond time and errors: novel
evaLuation methods for Information Visualization
(BELIV’06), pages 1–5. ACM Press, May 2006. 1595935622.
doi:10.1145/1168149.1168151.

[3] K. Andrews. Evaluation Comes in Many Guises. CHI 2008
Workshop on Beyond time and errors: novel evaLuation
methods for Information Visualization (BELIV’08), April
2008. http://www.dis.uniroma1.it/beliv08/
pospap/andrews.pdf.

[4] K. Andrews and J. Kasanicka. A Comparative Study of Four
Hierarchy Browsers using the Hierarchical Visualisation
Testing Environment (HVTE). In Proc. 11th International
Conference on Information Visualisation (IV’07), pages
81–86. IEEE Computer Society Press, July 2007.
doi:10.1109/IV.2007.8.

[5] D. Barreau. The Persistence of Behavior and Form in the
Organization of Personal Information. Journal of the
American Society for Information Science and Technology,
59(2):307–317, January 2008. ISSN 1532-2882.
doi:10.1002/asi.20752.

[6] O. Bergman, R. Beyth-Marom, R. Nachmias, N. Gradovitch,

4http://en.wikipedia.org/wiki/Open_science

http://hdl.handle.net/1721.1/6713
http://www.amazon.com/exec/obidos/ASIN/1595935622/
http://dx.doi.org/10.1145/1168149.1168151
http://www.dis.uniroma1.it/beliv08/pospap/andrews.pdf
http://www.dis.uniroma1.it/beliv08/pospap/andrews.pdf
http://dx.doi.org/10.1109/IV.2007.8
http://dx.doi.org/10.1002/asi.20752
http://en.wikipedia.org/wiki/Open_science


and S. Whittaker. Improved Search Engines and Navigation
Preference in Personal Information Management.
Transactions on Information Systems, 26(4):1–24, September
2008. ISSN 1046-8188. doi:10.1145/1402256.1402259.

[7] A. Civan, W. Jones, P. Klasnja, and H. Bruce. Better to
Organize Personal Information by Folders or by Tags?: The
Devil is in the Details. Proceedings of the American Society
for Information Science and Technology, 45(1):1–13, 2008.
ISSN 00447870. doi:10.1002/meet.2008.1450450214.

[8] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. James
W. O’Toole. Semantic File Systems. In Proc. 13th ACM
Symposium on Operating Systems Principles (SOSP 1991),
pages 16–25. ACM, October 1991.
doi:10.1145/121132.121138. http://cgs.csail.mit.
edu/history/publications/Papers/sfs.ps.

[9] J. L. Hsieh, C. H. Chen, I. W. Lin, , and C. T. Sun. A
Web-based Tagging Tool for Organizing Personal Documents
on PCs. In International Conference of Computer-Human
Interaction 2008 (CHI2008). Florence, Italy. April 2008.
http://works.bepress.com/lucemia/18/.

[10] A. Kobsa. User Experiments with Tree Visualization Systems.
In Proc. IEEE Symposium on Information Visualization
(InfoVis 2004), pages 9–16. Austin, Texas, USA, October
2004. doi:10.1109/INFVIS.2004.70.
http://www.ics.uci.edu/~kobsa/papers/
2004-InfoVis-kobsa.pdf.

[11] C. Körner, D. Benz, A. Hotho, M. Strohmaier, and
G. Stumme. Stop thinking, start tagging: tag semantics
emerge from collaborative verbosity. In Proceedings of the
19th international conference on World wide web, pages
521–530. ACM, New York, NY, USA, 2010. 1605587990.
doi:10.1145/1772690.1772744.

[12] V. Mayer-Schönberger. Delete: The Virtue of Forgetting in
the Digital Age. Princeton University Press, October 2009.
0691138613.

[13] P. Mohan, V. S. Raghuraman, and A. Siromoney. Semantic
File Retrieval in File Systems Using Virtual Directories.
Poster Session of the 13th Annual IEEE International
Conference on High Performance Computing (HiPC),

Bangalore, India, December 2006.
[14] T. Munzner. A Nested Process Model for Visualization

Design and Validation. IEEE Transactions on Visualization
and Computer Graphics, 15(6):921–928, November 2009.
ISSN 1077-2626. doi:10.1109/TVCG.2009.111.
http://cs.ubc.ca/labs/imager/tr/2009/
NestedModel/NestedModel.pdf.

[15] R. Pak, S. Pautz, and R. Iden. Information Organization and
Retrieval: A Comparison of Taxonomical and Tagging
Systems. Cognitive Technology, 12(1):31–44, 2007.
http://business.clemson.edu/Catlab/pubs/
pak-pautz-iden-2007.pdf.

[16] G. Solskinnsbakk and J. Gulla. A Hybrid Approach to
Constructing Tag Hierarchies. In R. Meersman, T. Dillon,
and P. Herrero, editors, On the Move to Meaningful Internet
Systems, OTM 2010, volume 6427 of Lecture Notes in
Computer Science, pages 975–982. Springer Berlin /
Heidelberg, 2010. doi:10.1007/978-3-642-16949-6_22.

[17] J. Teevan, C. Alvarado, M. S. Ackerman, and D. R. Karger.
The Perfect Search Engine is not enough: a Study of
Orienteering Behavior in Directed Search. In Proceedings of
the SIGCHI conference on Human factors in computing
systems, CHI ’04, pages 415–422. ACM, New York, NY,
USA, 2004. 1-58113-702-8. doi:10.1145/985692.985745.
http://people.csail.mit.edu/teevan/work/
publications/papers/chi04.pdf.

[18] K. Voit. tagstore — Project home page, November 2011.
http://tagstore.org/.

[19] K. Voit, K. Andrews, and W. Slany. Why Personal
Information Management (PIM) Technologies Are Not
Widespread. In PIM09 ASIS&T 2009 Workshop, Vancouver,
BC, Canada, pages 60–64. 2009.
http://pimworkshop.org/2009/index.php?
page=acceptedpapers.

[20] K. Voit, K. Andrews, and W. Slany. TagTree: Storing and
Re-finding Files Using Tags. In Proc. 7th Conference of the
Austrian Computer Society Workgroup: Human-Computer
Interaction (Usab 2011), volume 7058 of LNCS, pages
471–481. Springer, November 2011. 3642253636.
doi:10.1007/978-3-642-25364-5_33.

http://dx.doi.org/10.1145/1402256.1402259
http://dx.doi.org/10.1002/meet.2008.1450450214
http://dx.doi.org/10.1145/121132.121138
http://cgs.csail.mit.edu/history/publications/Papers/sfs.ps
http://cgs.csail.mit.edu/history/publications/Papers/sfs.ps
http://works.bepress.com/lucemia/18/
http://dx.doi.org/10.1109/INFVIS.2004.70
http://www.ics.uci.edu/~kobsa/papers/2004-InfoVis-kobsa.pdf
http://www.ics.uci.edu/~kobsa/papers/2004-InfoVis-kobsa.pdf
http://www.amazon.com/exec/obidos/ASIN/1605587990/
http://dx.doi.org/10.1145/1772690.1772744
http://www.amazon.com/exec/obidos/ASIN/0691138613/
http://dx.doi.org/10.1109/TVCG.2009.111
http://cs.ubc.ca/labs/imager/tr/2009/NestedModel/NestedModel.pdf
http://cs.ubc.ca/labs/imager/tr/2009/NestedModel/NestedModel.pdf
http://business.clemson.edu/Catlab/pubs/pak-pautz-iden-2007.pdf
http://business.clemson.edu/Catlab/pubs/pak-pautz-iden-2007.pdf
http://dx.doi.org/10.1007/978-3-642-16949-6_22
http://www.amazon.com/exec/obidos/ASIN/1-58113-702-8/
http://dx.doi.org/10.1145/985692.985745
http://people.csail.mit.edu/teevan/work/publications/papers/chi04.pdf
http://people.csail.mit.edu/teevan/work/publications/papers/chi04.pdf
http://tagstore.org/
http://pimworkshop.org/2009/index.php?page=acceptedpapers
http://pimworkshop.org/2009/index.php?page=acceptedpapers
http://www.amazon.com/exec/obidos/ASIN/3642253636/
http://dx.doi.org/10.1007/978-3-642-25364-5_33

	1 Introduction
	2 Related Work
	3 tagstore: A Research Frame-work for Tagging Interfaces
	4 Using tagstore for Research
	5 Concluding Remarks
	6 References

