
Can You Retrieve a File on the Computer in your First

Attempt? Think to a New File Manager for Multiple

Categorization of Your Personal Information

Ali Sajedi
Software Engineering Department, Azad University

– Lahijan Branch, Iran

sajedi@Liau.ac.ir

Seyyed Hamidreza Afzali
School of ICT, Royal Institute of Technology (KTH),

Sweden

hr.afzali@gmail.com

Zahra Zabardast
Department of Management, Islamic Azad university, roudsar and Amlash Branch, Roudsar, Iran

z.zebardast@yahoo.com

ABSTRACT

Recent advances in the two past decades in storage technology

permitted the users gather more and more information. This

caused an information explosion in different areas from personal

computers and mobile cell phones to web sites and social

networks. In the personal information management (PIM) studies,

management of information was enhanced by utilizing

hierarchical structures, search and tagging methods. In the case of

files and folders, however, the file manager software is used the

most. In almost all the file managers, the foundation of file

storage/retrieval is the hierarchical file system. A file may fit to

several paths but should be stored / accessed via only one path.

Making the choice the user may face ambiguity in storage time.

Hence redundancy may occur during the passage of time. In other

words, different versions of a file may be stored undesirably. On

the other hand, in retrieval of the desired file, again the ambiguity

occurs in choosing a file (and path) between various candidates.

The result is increasing access time and user frustration. This is

because the infrastructure of file storage/retrieval is the same (as

the previous decades), but the data and information are massively

increased.

In this article, a new file manager, File & Concept Browser (FCB)

is proposed that supports multiple categorizations. The general

attitude in FCB is similar to the common hierarchical file

managers, but it supports maintaining a file through different

paths without multi-versioning, redundancy and ambiguity. The

idea was implemented as a software prototype and experimental

results show that in addition to avoiding redundancy, using FCB

can reduce access time, retrieval failure and user frustration.

Categories and Subject Descriptors

D.3.3 [Operating Systems]: File Systems Management – directory

structures, access methods.

D.3.3 [Information Storage and Retrieval]: Information Search

and Retrieval – retrieval models, selection process, search process.

H.5.2 [Information Interfaces and Presentation]: User Interfaces –

interaction styles.

General Terms

Design, Human factors.

Keywords

Directory Structure, File System, Information Retrieval,

Classification, User Interface.

1. INTRODUCTION
Vast amounts of information with different usages are presented

today in hierarchical structures such as taxonomies [4], site maps

in the websites [6], help systems [7] file managers [5] and even

email management systems [2]. Due to large amount of presented

data in the mentioned structures, users are lost sometimes

between the mass of data. As a result, they have to be categorized

in a top-down manner. The proper the classification of objects is,

the more the clarity and user satisfaction would be obtained.

Traditionally, views about the file management are based on

folders’ hierarchical structure which is known as folders tree view.

The folders are categorized hierarchically so that each folder

located somewhere in the tree view may contain one or more files.

The benefits of the hierarchical file managers are so much that

they are used commonly in almost all operating systems [9], [10].

The problem is with the bulk of files and folders especially in the

recent years. Users can be confused when using stored

information on their own hard disks. Moreover, the mass of

folders available on their local drives makes the decisions severe

in some cases to place a file in which folder. The same story

occurs when looking for a file in different categorized folders.

However, To overcome those issues along with problems such as

redundancy, ambiguity and lack of clarity in file managers, some

fundamental changes are needed in the structure of information

storage (hence in information retrieval).

Let us describe the issue more clearly. A hierarchical structure is

used for the file system in most operating systems for PCs and

mobile devices. A hierarchical file structure is a tree structure in

which files and documents are stored in nodes. These nodes are

called folders. Looking back to the parents of file systems used in

current operating systems shows that hierarchy was a

fundamental consideration in the design of their structure. During

the development of these file systems in past years the

hierarchical structure is remained unchanged as the base of them.

For example in Microsoft File Systems from FAT to NTFS wide

improvements and changes are done in the system layer that were

mostly on implementation and security issues [11]. Despite all

these changes, the hierarchy is still the base of the file system as

previous.

The wide use of hierarchy in file system structures is because of

its benefits in classification of files and documents. As seen in

everyday life, using a tree is an easy and simple way to classify

objects. Everyone is familiar with tree structures and can easily

understand them. Therefore, hierarchical structures are easy to use

and this is an important issue in acceptance and usage of a system

by users. The other important factor is the simplicity of

hierarchical structures. It is important from both end-users and

developers’ point of view. As mentioned, users can easily interact

with tree structures as they face many hierarchical structures in

everyday life. From developers’ point of view, a tree structure can

be easily implemented with simple data structures. More

importantly, the hierarchical structure gives the users a top-down

sight on the information structure so that no effort is consumed in

the top levels to the trivial articles. This way rapid access to the

tiny materials is acquired by level-by-level consideration of top-

down structured data in smaller groups. The information is also

eliminated rapidly as a user moves forward minor items.

However, this hierarchical structure has a limitation. Each file has

to be placed in a folder. In other words, the folder is considered as

the container of the file and access to the file is permitted through

the folder. This is originated from the primary view toward files

where the users dealt with a limited number of files. Hence a

simple categorization was utilized that was to relate a file to a

folder (as a place like wrapper). The folders then became more

important than the files! Especially after growth of the number of

files and folders, the user had to remember a sequence of folders

(as a path) to retrieve a file. Although search facilities simplify this

problem, the user in many cases doubts and faces challenges in

choosing the container of a file between thousands of folders.

There is also hard to determine the container of a new file.

Considering the best match between thousands of available

folders and also new possible folders is not simple.

Hence, both retrieval and storage face challenges; On one hand,

you should find the best location for storage (although it is boring

and sometimes impossible) and this is only one location. Note

that considering different aspects different locations may be

selected. On the other hand, when retrieving a file, you have to

remember that location again. Again, note that this is only one

location and that quick retrieval needs the precise storage as

mentioned, although difficult or sometimes impossible. Also note

that the best location for a file may change during the time.

As a result, ambiguity appears emerging vast number of files

located in complex hierarchical folder structures. To have a more

flexible file storage and retrieval, this hierarchical view is to be

refined. Something more than a simple tree is needed to support

more flexible visualization. In this paper, a new approach -File &

Concept Browser- toward storage and retrieval is introduced that

provides easier storage and retrieval.

The structure of the paper is as follows; in section 2, the literature

review is shortly studied. Section 3 is devoted to introducing FCB

solution and the prototype software. In section 4, experimental

results on the developed prototype and a survey are described.

Finally, section 5 concludes the paper.

2. Literature Review
Hierarchical information visualization has been extensively

studied in [1][2][3][4][5] in different fields. For example, a new

hierarchical integrated web classification approach is proposed in

[1]. Their approach uses image-based and text based methods

mixed together. They perform classification on a hierarchy

differently on different levels of tree. Instead of using a flat

classifier for text and image classification, texts are used for

branches and images used at leaves.

A comprehensive method is offered in [4] for organizing

enterprise content efficiently. This process includes creating

taxonomies and building classification models for them. It mainly

discusses about thematic mapping and has been applied to a large

number of corpora of different genres. Newspaper articles, Usenet

news group documents, patent documents, web documents from

various content providers can be mentioned as examples.

An Email Management System is proposed in [2] which does

some tasks in email management. Sorting messages to virtual

folders, prioritizing, reading and replying automatically or semi-

automatically, archiving and deleting mail items can be mentioned

as these tasks.

In [5] the visualization of file system is addressed. It presents a

novel approach for file system’s search section. There is the

ability to browse files and documents from a remote file system.

Notice that there was no need to have them copied to the file

system. It is an important facility for collaborative systems. The

main idea is to make access to several remote file systems by a

limited system with limited display and human input.

Finally, in [8] a prototype file manager called VennFS is designed

to overcome some limitations of current file managers which are

caused by hierarchical structures. It gives the ability of

categorizing documents so that a file may be in several categorizes

at a moment. Venn diagram is used to visualize categories. It

allows users to use proximity to show similarities and relations

between categories and files. VennFS is a novel idea in visualizing

file system. A great work is done to solve the problem of

categorization limitations in hierarchical file systems in cases that

documents belong to several aspects and have to be accessed

through several folders simultaneously. They have also provided

tools for presenting relationships between categories and files by

the help of proximity. Users can set data relationship as spatial

relations. The other interesting capability is the ability of filtering

documents according to their date. As recently accessed files are

to be accessed by a higher approximation, they have provided an

indication on recent use of files. It is shown by “hot” and “cold”

for recently accessed and old files. However, they abandoned

hierarchical visualization of the file system. Also, while system

works well in many cases, finding an item with growth of the bulk

of data would be tedious. Moreover, they can address a file from

within at most four folders.

Suppose a user wants to have the video file of his/her paper

presentation accessible both in “My Papers” and “My Videos”

folders. This is because of logical dependency between the file

and the two folders. According to [12], it is obvious that a precise

organization of the information can lead to better retrieval.

However, the first possible solution is to copy the video file to

both folders. This leads to data redundancy that is undesirable.

The redundancy problem causes ambiguity in having multiple

versions of a single file in different folders, especially when the

versions are updated frequently. It is also possible to use shortcut

that is a small file containing the address of a target file or folder

[13]. The problem is that shortcuts do not make two-side

relationships. They are actually static files and cannot be

synchronized by most possible changes that happen to the target

file. Therefore, if the target file is renamed, deleted or moved, the

shortcut becomes useless. Using more advanced available

facilities also cannot solve the problem. For example, although

Symbolic Links (Soft Links) and Hard Links [2] enhanced the

shortcuts in MS Windows and Linux systems, they do not solve

this problem totally and many issues remain unsolved. For

example, Hard Links of a file fail to work when changing the place

of the file. They save the attributes of the target file separately, so

all of them change due to redundant information in the Hard

Links. Symbolic links do not support pursuit addressing. They

remain orphan when deleting the target file. Besides, changing the

place of the target file makes its symbolic links useless. Using

Junction Points [2] in Microsoft Windows is also a means of

mounting a file or folder to another partition to be appeared here,

but actually being stored somewhere else. It is used due to space

limitations in partitions of disk. On the other hand, all of them add

an extra layer to users’ understanding of the file system even

though all the mentioned aspects are corrected. As users prefer

simpler systems, they would like a single layer system which

covers both files and shortcuts in a single context.

In all the mentioned applications, the simple but powerful

hierarchy was utilized. However, as mentioned in the previous

section, this hierarchy causes ambiguity and some other problems

in file system. Hence some modification and improvement are

suggested in this paper. The approach of this paper differs from

other optional links such as shortcut, Symbolic Link, Hard Link

and Junction Point. It solves all the mentioned problems along

with a proper visualization of conceptual relations between a file

and all applicable folders.

3. File & Concept Browser (FCB)
As mentioned in section 1, maintenance of files and folders

sometimes becomes ambiguous with growth of folders’

hierarchy. However, the user chooses an available folder or makes

a new folder to save the new file in. Of course it is one of the

appropriate locations for that file, but not necessarily the best

location. So it affects the retrieval progress later. While obtaining

best locations in storage, there is no guarantee about retrieval on

the first attempt (or one of the first few attempts). Nevertheless,

there isn’t always applicable to maintain the best locations; hence

the problem is intensified in both storage and retrieval sides. On

one hand, in storage of the files, usually a good location is chosen

(or a new folder is created), but not necessarily the best location.

On the other hand, several good locations (i.e., related locations to

the respective file) will be looked for in order, but not necessarily

the best location. In other words, failing to retrieve a file in the

first attempt (or first few attempts) is accompanied with absence

of exact best location for a file and generally the ambiguity

problem in file storage.

This is not all the story. The ambiguity problem in storage phase

causes redundant documents (rather with the same name or

different names) due to the fact that the user doesn’t find the

document in one or more possible paths and gives up. So another

copy of document is placed somewhere else (logically near, but

maybe far in the folder hierarchy). Our survey (in section 4)

shows that this happens frequently resulting two other problems:

redundancy and multi versioning. The former is due to multiple

copies of a document created over time and the latter is

consequence of the ambiguity in retrieving and editing the

different documents over time. All in all, the current folders’

containment rule isn’t perfect enough to pursue the needs of file

storage/retrieval. It causes ambiguity, redundancy and multiple

versioning.

3.1 FCB Solution
The goal is to access to a file as rapid as possible (i.e., in the first

attempt). The user doesn’t want to inspect several paths looking

for a document. As mentioned before, the difficulties originate

from storage limitation since a file should be located somewhere

in the folder hierarchy. The determined folder in the chosen path

will be considered the owner of the file, hence the file will belong

to the owner and it needs only one owner.

The solution changes this view so that a folder no longer is

considered as the owner or container of files; nevertheless, it is

only a concept to facilitate access to the files. So there will be no

restriction in the owner ship or containment of the files. Files

should be independent. The abstract view over the files

necessitates their independence. However, the paths can remain

unchanged to a large extent. As mentioned, a file can be

addressed through the new notion toward folders, i.e., “Concept”.

A concept is a folder without ownership (or containment) toward

files. A concept can point to several files as its members. At the

same time, the files are free to be member of other concepts.

Hence the abstract view over the files is preserved along with

minor changes in file access from the point of view of the user.

In order to implement this structure, all the files have to be placed

in a repository regardless of their membership in different

concepts. In fact, a file’s storage doesn’t determine the place of

that file. Instead, it needs to at least one concept to provide access

to that file. While the files are stored in this flat repository, they

are member of one or more concepts. So each file’s icon is shown

in the related concepts.

The user copies or moves the files in different concepts as in

current file managers. No change in his/her transactions. But this

is only the users’ point of view. The system keeps no file

ownerships. It preserves only the memberships; one or more for

each file. Each membership connects a file to a concept. And the

file’s icon is shown in the all related concepts to preserve the

current hierarchical view over the file system. As a result, a file is

accessible through as many concepts as the user wants. In other

words, multiple categorizations will be available.

By using “concept” instead of “folder”, the user benefits freedom

of copying a file in all the related concepts without actually

duplicating it. There is no need to choose the best location. On the

other hand, the retrieval phase doesn’t face problems because the

file is accessible through multiple paths (all the related paths based

on the user’s point of view can lead to the file). So no ambiguity

in storage and retrieval takes place. Besides, the files are not

duplicated anywhere by keeping a file only once in the repository

and storing all the file-concept relationships to make several

access points via different concepts.

The FCB system keeps all the information about the followings:

-Files (in a flat repository, hidden from the user)

-Concepts (managed by the user as folders)

-Files’ membership in concepts (managed by the

system, also indirectly by the user with file operations,

i.e. copy-paste, cut-paste, delete, etc.)

Note that the user performs file operations just as he/she does

now. He/she finds concept’s hierarchy (as folders’) and when

choosing a concept (and making it highlighted), is noticed by

icons of the files that are member of the respective concept (or

have relationship with the concept).

FCB not only has the abilities of hierarchical file systems with

resolved ambiguity and redundancy problems, but also benefits

new capabilities that are not available in hierarchical structures.

Concepts, which are actually mathematical sets, are defined to be

used instead of folders supporting multiple categorizations.

3.2 FCB Software and its Operations
The FCB prototype was designed and developed with Microsoft

Visual Studio 2008 based on .NET 2 Framework. It contains six

Windows Forms and three Modules. Because of the ease of use

for end-users, Microsoft Access is chosen as its database to save

the file-concept relationships. In this part, first, the UI is

introduced, and then the fundamental file operations are discussed

by describing different parts of the software.

3.2.1 Software Environment
FCB looks like usual file browsers at first look (see Figure 1), but

it benefits many fundamental differences with them. First of all,

the structure of file storage systems they are developed for are

different. There are also some differences in the environment that

are described here.

Just like many other file browser software, there is a tree structure

in the left side of FCB environment and a file panel in the right.

The tree view shows the classification of concepts. The proposed

file manager uses two selection methods and three browse modes:

Selection methods are used to choose concepts while browse

modes are used to refresh file list:

 - Selection methods (for concepts):

1- Select a single concept by clicking on its name
2- Select one or more concepts by placing a check mark
on the provided check box near each concept

These can be selected simultaneously. However, only one of them

(i.e., the highlighted concept or all the ticked concepts) are

inspected based on the selected browse mode.

 - Brows modes (to show files):
 1- Uni
 2- Multi
 - ∩

 - ∪

In Uni mode, the highlighted concept is observed and all the files

that are in relationship with that concept are shown in the file

panel. But in Multi modes (∩, ∪), the ticked concepts are

observed and the following operations are performed:

 -∩: All the files that are in relationship with all the ticked

concepts are shown in the file panel.

 -∪: All the files that are in relationship with each of the ticked

concepts are shown in the file panel.

These two modes are useful when dealing with overcrowding

concepts or looking for a file in sparse concepts. They let the user

limit the browsed files.

For example, when facing so many files dealing with concepts,

using “Multi ∩” mode and placing checkmarks beside two or

more concepts will be so powerful in retrieving the desired

documents. Or in a less common situation when the user doesn’t

see the desired file via neither of the browsed concepts (usually in

sparse concepts when most of the concepts are linked to no files

or only a few files), using “Multi ∪” mode and placing

checkmarks beside two or more concepts again will be so

powerful.

In addition to the browse as benefits of FCB, the difference here

comparing with traditional file managers is that hence the file

panel can be result of set operations (i.e., ∩, ∪), it doesn’t contain

concepts.

Consider Figures 2 and 3. If the files F1, F2, F3 and F4, are

members of study concept and files F3, F4, F5, F6, and F7 are

Figure 1. FCB Environment.

members of work concept, then the result of browsing in “Multi

∩” mode will be F3 and F4 (see figure 2), but the result of

browsing in “Multi ∪” mode will be all the files from F1 to F7 (see

Figure 3). However, the result of Uni browse mode in both figures

will be F1 to F4 because the concept “Study” is highlighted.

As mentioned before, Multi modes help the user avoid over

populating the file panel. For example in Figure 4, seven files are

in relationship with concept “Study” (i.e., “Study” has 7

members), but only two of them are also in relationship with

“Work” (i.e., are members of “Work”).

Figure 4 (First part) also indicates that a concept that a concept

can address more than one file with the same name but different

contents (e.g., “readme.txt” in this figure). This was one of the

problems in early discussions in FCB analysis and design. The

conclusion was that hence the files are to be seen abstract –and

separate from folders (or concepts)- and they will be saved in a

flat repository, it is both reasonable and practical to allow multiple

files with the same name via a concept. Abstract view over files

says that the files are not identified by only their names. As a

result, a unique comment is created for each file as its identifier. It

is constructed from the name of the file following a “-“and a

sequence number issued by the FCB system considering the flat

repository for the file name in all the files. For example, if there

are three files named “readme.txt” in the system, the fourth

“readme.txt” file’s comment will be “readme.txt - 4”. Note that

there is no need to look for a name in the entire repository to

count the number of that file to issue the comment. Nevertheless,

there is an independent table (named SequenceNumber)

containing different names of files and the last sequence number

issued. Figure 5 shows this table along with two tables for general

information about files and concepts and another for their

relationships.

Note that the comments are hidden from the users as much as

possible (although there is an option available from “Tools 

Concept Options” to show the comments everywhere; see Figure

6). So the comments aren’t shown unless the results of browse

are two files with the same name in the file panel. In this case, the

comments isolate them from each other.

3.2.2 Importing Files and Folders
“Import File” and “Import Folder” can be used to import new

files and folders to FCB. Considering that there are two methods

of choosing where to add the selected files, if the browse type is

set to “Uni” mode, files will be related to the selected (highlighted)

concept. But if it is set to any of the “Multi” modes, files will be

related to all the marked concepts by checkmarks. A whole folder

can also be imported using “Import Folder” option. By importing

a folder, a concept is created in the concept tree for each of its

sub-folders. All the files are created physically in the system and

the appropriate relationships will be added with links to the

respective concepts.

 SequenceNumber File

id title seqNum … id title size …

 Relation

 id fileId conceptId …

 Concept

 id parentId title …

Figure 5. The basic tables needed for FCB in database

manner.

Figure 3. “Multi ∪” browse mode and the results shown

graphically

Figure 2. “Multi ∩” browses mode and the results shown

graphically

Figure 4. Comparing the results in Uni and “Multi ∩”

browse mode.

3.2.3 Concept Pop-up Menu
Concepts drop-down menu (Figure 7) consists of seven items:

New, Cut, Copy, Paste, Rename, Delete and Uncheck All. It

appears when right clicking on a concept in the concept tree view.

Definitions of them are explained bellow:

New: add a new concept inside the selected concept.

Cut: stores selected concept (and all is sub-concepts

hierarchically) in clipboard with cut flag.

Copy: stores selected concept (and all is sub-concepts

hierarchically) in clipboard with copy flag.

Paste: copies the concept in the clipboard (and all its sub-

concepts plus all the links with the files) to the selected concept or

moves the concept in the clipboard (and all its sub-concepts plus

all the links with the files) to the target, based on the last copy/cut

triggered operation. Note that the browse mode doesn’t affect the

concept operation considered in this section. They only affect the

manner of visualizing the files and working with files panel. Also

note that both copy-paste and cut-paste operations don’t do

anything with the original file stored in the flat repository. They

only manage relationships between the file(s) and the highlighted

concept. For example, when copying file “readme.txt” into

“Research”, it only links it to the concept “Research”.

Rename: used to rename a concept.

Delete: deletes a concept with all its sub-concepts and their

relationship with files. Note that if a physical file has only

relationships with some of these concepts (and has relationship

with none of the other concepts), it will also be deleted physically.

Uncheck All: removes checkmarks of all checked concepts.

3.2.4 Files Pop-up Menu
By right-clicking on one or more files, a drop-down menu will be

shown as seen in Figure 8. Ten items of this menu are Open, Cut,

Copy, Paste, Paste Duplicate, Delete, Rename, Select All

Containers, Refresh and Properties. Here is definition of each

menu item:

Open: opens the selected files with its appropriate application.

Cut: stores selected files in clipboard with cut flag.

Copy: stores selected files in clipboard with copy flag.

Past e: Again, ba sed on the last issued copy or cut command, it

may only create new relationships between the copied file(s) and

the target concept (“copy” case) or also remove the relationship(s)

between the cut file(s) and source concept (“cut” case). As a

result, copying or moving acts on file relationships (or file

memberships) with the concepts. However, due to simplicity it

may be referred to coping or moving files.

Based on the selection mode, the target may be the highlighted

concept if the “Uni” browse mode is chosen or all the checked

concepts if any of the “Multi” browse modes is selected. The

physical file is not moved or copied and all operations are

performed on relationships (i.e., memberships or links).

Figure 7. Concept Pop-up Menu

Figure 6. Concept Options

Figure 8. File Pop-up Menu

Paste Duplicate: this item will be enabled when a file is copied

into clipboard (it is disabled when a file is cut). It will make new

duplications of copied files in selected (highlighted) concept or all

the ticked concepts based on browse mode, (“Uni”, “Multi ∩”

and “Multi ∪”).

Delete: used to delete the membership of the selected file(s). The

physical file(s) may have many other links. All these links will be

found and the user is then asked which instances (memberships

or links) of each file is to be deleted, then a confirmation

containing two list boxes which one of them lists selected files is

appeared. By selecting a file, all its related concepts (that the file is

a member of) are shown in the other list box with their paths

(Figure 9). Users can select which one to be deleted and which

one to be kept. There is an option to check all the concepts

pointing to that file and also a button to delete all the relationships

of all the files in the first box plus the physical files (“Mass

Delete”).

Rename: renames selected file. Consider that when renaming a

file, it will be appeared with the new name while accessing from

each of the linked concepts.

Select All Containers: all concepts which selected file is member

of them will be checked after clearing the checkmarks previously

ticked beside concepts (Figure 10).

Refresh: refreshes file panel.

Properties: It is similar to properties of files in Microsoft

Windows, but there is also some extra information here. The

name and comment of the file are shown at the top of the form

(Figure 11). Following that, type, size and dates related to the

physical file are seen. There is also a useful list box containing all

linked concepts. These are in fact the equivalent access paths. At

the end of the form, user can find information about attributes of

the physical file such as being read-only or hidden.

4. Experimental Analysis
The software was developed to evaluate FCB system’s challenges

and also the reflection of users against this approach. New abilities

of the FCB were discussed through the analysis, design and

implementation processes to achieve a consistent understanding.

Several experiments have been done in order to consider the

effects of FCB. First, a questionnaire was designed and the user's

opinions were collected to determine several directions. Then,

several computers have been examined to determine the

redundancy rate. Finally, the FCB prototype was used in order to

see the overall users' feedback after using it.

4.1 Questionnaire Analysis
A questionnaire containing 20 closed questions categorized in 6

groups about current file systems was designed. It was offered to

120 students in different majors (but mostly engineering students)

with different levels of computer expertise (expert, intermediate

and novice; almost with equal distribution). 110 students filled the

questionnaires. The summary of the result is shown in Table 1.

The results show that almost 69.7% of the students experienced

multiple copies of a file in the folders occasionally. 44.1% of them

have tried ambiguity when saving a file between several folders

most of the times. 50.6% of them indicated that finding the files is

ambiguous in their hard drive and 65% faced low disk space. Also

70.5 percent faced redundant files so often and failed to manage

them.

The two last question groups are related directly to the benefits of

the FCB system. As considering all the linked paths to a file in

FCB is a useful capability, 70.5 percent of the users mentioned

this as a desired capability. Also after linking a file to all related

concepts in their storage time, FCB helps the users find the file in

their first attempt. This is the mostly popular item between the

Figure 10. Select All Containers of a File

Figure 9. Delete Dialog

Figure 11. File Properties Dialog

users (94.5% of the users believed that this would be a highly

desired capability).

4.2 A brief PC Analysis
In order to obtain a general sight on the redundancy problems in

current file managers, a limited number of computers of 10

software engineering students were examined.

Directory Opus 9.0 [14] was used in our study to evaluate several

separate Windows hard drives on the PCs. The evaluation shows

that in average 10,000 files out of 70,000 containing 1GB to 5GB

out of 40GB to 80GB files available on the Hard Disk were

redundant items. This result shows that a great amount of the

space of a hard disk is occupied by 1 to 10 extra copies of existing

files. Further studies on discovered redundant files showed that

some of them were created automatically by the system and some

were copied by users. However, a large number of redundant files

were created and copied by users. As discussed before

redundancy may be a result of ambiguity in file storage and

wastes storage space.

4.3 Prototype Analysis
Nine computer students participated in a two-day experiment to

store and retrieve documents using both paradigms (i.e., Folder

paradigm with "MS Windows Explorer" or "My Computer" and

FCB paradigm with our implemented prototype system). All of

them were moderate or expert users.

The users were not familiar with FCB software before, or the FCB

approach; hence the chance was given to them to familiarize

themselves with the FCB prototype for at most one hour after

demonstrating the idea and the program. Although the time is not

sufficient to be proficient FCB users, they all finished the practice

after 15 to 45 minutes. According to their opinion, the UI was

easy-to-learn and it resembled the UI and the operations of

Windows Explorer. Therefore, they were able to make hierarchies

of concepts and categorize the documents easily.

A competition was set up for making best categorizations in either

paradigm. The users were divided into two groups; the first four

users examined the folder paradigm first and the other five

examined the FCB paradigm first. Interestingly, there was no

significant difference between the average results of two groups.

Hence the final results are studied together.

First, a folder containing 88 documents was given to the users.

They had to open each document, create folders or concepts

regarding the examination (i.e. folder or FCB) and categorize

them in the folders/concepts by cutting/copying and pasting

operations provided in FCB and MS Windows. In MS Windows

experiment, they could use drag and drop operations too.

They created an average of 15 folders and 25 concepts in either

experiment. For FCB approach, a bit more time was needed to

categorize the items due to the fact that each file had to be related

to several concepts. In other words, a file should be connected to

more than one concept; as a result, the time slightly increases (not

so much) because the user does not have to place a file in its best

location. He/she can paste a file in several concepts to increase

retrieval efficiency without considering size or redundancy

matters. On the other hand, they were unfamiliar with the FCB

previously, but with lots of folder experiences in several years.

Then, in order to perform the test, 19 randomly selected files were

demanded one by one and the time to find the files were recorded.

The selected files were equal for the two experiments (i.e. folder

and FCB paradigms) to achieve comparable results, but the users

did not know this before finishing their categorization. Each file

search was started by giving the name of the document or some

clues from its contents.

In order to control the experiment synchronously and preventing

exhaustion and give up, a maximum threshold of two minutes

was applied for each test case. The test case result was recorded as

"failure" if the user was not able to retrieve the file in this time

limit. Trial experiments showed that in such cases the user usually

gives up or spends a long time (longer than three minutes in

average) for retrieving the file. As a result, the time 160 seconds

was chosen for these cases.

The average access time in FCB was 57.0 seconds (=23.6)

against 62 seconds (=18.6) in folder paradigm (7.9 percent faster

in FCB) as shown in Table 2.

However, comparing the "failure rate" of the users are far more

interesting;

 On average, 2.22 cases out of 19 test cases were failed to be

found in FCB (=1.2) against 4.33 cases in folder paradigm

(=2.3). 47.8% decrease in failed attempts as shown in Table 2.

In the real situations the user gives up when he/she fails finding

the file by examining several possible locations and creates an

extra copy of the file often with a different name. Our "PC

Analysis" supports this claim.

However, we can expect better results for FCB when the

experience time is increased. In other words, more practice with

the software will generate better results.

Table 1. Answered questions by the users (%)

Question Result

Copy a file in multiple folders (for several different

files) 69.7

Ambiguity in saving a file (between several folders) 44.1

Ambiguity in finding a file (between several folders) 50.6

Faced low disk space 65

Fail to manage redundant files. 70.5

Is desired to find all copies of a single file in the

system at a glance. 77.6

Is highly desired to find a file in the first attempt 94.5

Table 2. FCB test results compared with folder paradigm

 Average

access time

Average failures

(out of 19 cases)

Folder paradigm 62 (=18.6) 4.33(=2.3)

FCB paradigm 57(=23.6) 2.22(=1.2)

5. Conclusion and Future works
A method was presented to gain a flexible, flat visualization to the

file system. In this method, the “folders” are changed to

“concepts” and there is no longer the containment rule for them.

So the paths become only alternative ways to access a file instead

of keeping them.

The proposed method reduces ambiguity in both storage and

retrieval periods. On the storage time, instead of looking for best

container or owner, the user just can copy a file in several related

concepts. On the other hand, it will be accessed often in first

attempt although this needs an accurate storage relating the file to

all (or almost all) related concepts.

It is also mentioned that it decreases redundant documents while

preserving ease of access. On the users’ point of view, they can

copy a file everywhere, but in fact only the handle to the file is

distributed nor the file itself.

Since FCB benefits addressing to a file via different concepts, in

general, the files addressed from a concept may be overcrowded

in some cases. In this case, using two additional browse modes

(“Multi ∩” and “Multi ∪”) help the user gain quick access to the

file. Hence it can be used as a search tool as well as a file browser.

It can also be used as a PIM tool allowing the users benefit

multiple categorization of their personal content (from files and

folders to e-mail messages).

The FCB prototype was developed to both investigate the

practical aspects and evaluate its application. Comparison

between the multiple categorizations offered by FCB approach

and the traditional hierarchical categorizations shows that FCB

not only reduces access time to files, but also prevents

shortcoming, failure and frustration in retrieving documents. In

addition, the first two experimental results show that massive

amounts of redundant items are scattered throughout the systems.

They also show that this is an undesirable situation emerged

gradually by massive growth of files and folders.

The information breakthrough in these decades took place in both

sides; Information volume and information storage devices

(software and hardware). On one hand, information volumes in

different forms from files and folders to web information, from

mobile contacts to e-mail messages, etc., became thousands and

even millions of times increased. On the other hand, software and

hardware devices renovated to new comprehensive friendly

devices. In case of files and folders, although there are valuable

improvements in supporting large volumes of data, the

classification styles follow the primary hierarchical method.

Almost all the file managers have the same hierarchical

foundation. The information society needs something more than

simple hierarchies to be utilized in storage and retrieval. FCB was

a solution to this demand.

However, during the design, implementation, examination and

user studies some new ideas appeared;

First, utilizing much more visualizations can improve the program.

For example, utilizing more than one hierarchy and using “Back”

and “Forward” keys to traverse the concepts more efficiently are

useful.

Then, Embedding the FCB system in routine and usual programs

that deal with files and folders would be valuable. For example,

asking to save a file in several concepts in a “Save as” dialog.

Finally, exploiting the proposed idea in other different platforms

such as e-mail management systems would be worthwhile.

6. REFERENCES
[1] Lu, C., Drew, M.s.2001, "Construction of a hierarchical

classifier schema using a combination of text-based and

image-based approaches," Proceedings of the 24th annual

international ACM SIGIR conference on Research and

development in information retrieval. ACM New York, NY,

USA. 438 – 439.

DOI=http://doi.acm.org/10.1145/383952.384075

[2] Ho, V., Wobcket, W., Compton, P. 2003, "EMMA: An Email

Management Assistant," Proceedings of the IEEE/WIC

International Conference on Intelligent Agent Technology.

IEEE Computer Society Washington, DC, USA. 67. DOI=

http://doi.ieeecomputersociety.org/10.1109/IAT.2003.124105

0

[3] Kandogan, E., Shneiderman, B. 1996, "Elastic Windows:

improved Spatial Layout and Rapid MuRipme Window

Operations," ACM Special Interest Group on Multimedia.

29– 38. DOI=http://doi.acm.org/10.1145/948449.948454

[4] Chung, C.Y., Lieu, R., Jinhui, L.,Alpha, L., Jianchang, Mao.,

Prabhakar, R. 2002, "Thematic mapping - from unstructured

documents to taxonomies," Proceedings of the eleventh

international conference on Information and knowledge

management," McLean, Virginia, USA. 608-610. ACM,1-

58113-492-4. DOI=

http://doi.acm.org/10.1145/584792.584892

[5] Collins, A. 2007, "Exploring Tabletop File System

interfaces," CHI 2007, April 28—May 3, 2007, San Jose,

California,USA. ACM 978-1-59593-642 4/07/0004.

[6] N. Bansal, S. Guha, N. Kudas, "Ad-hoc aggregations of

ranked lists in the presence of hierarchies," Proceedings of

the 2008 ACM SIGMOD international conference on

Management of data, PP. 67-78, ACM New York, NY, USA,

2008.

[7] Matthew Willis, " Building effective help systems: modelling

human help seeking behavior," Proceedings of the 18th

Australia conference on Computer-Human Interaction:

Design: Activities, Artefacts and Environments, pp. 433 -

436, ACM New York, NY, USA, 2006.

[8] D. chiara, R.,Erra ,U.,Scarano ,V, "VENNFS: A Venn-

Diagram File Manager," Seventh International Conference on

Information Visualization, pp. 120. IEEE Computer Society

Washington, DC, 2003.

[9] File managers,

http://en.wikipedia.org/wiki/Comparison_of_file_managers

[10] File managers, http://www.linux.com/articles/59043. 2009

[11] Microsoft File Systems from FAT to NTFS,

http://support.microsoft.com/kb/100108. 2009

[12] Information Organization meets Information Retrieval:

Rethinking the iSchool Core – Panel; Borgman, C.,

http://www.linux.com/articles/59043
http://support.microsoft.com/kb/100108

Mayernik, M., Larsen, R., Glushko, R., Hemerly, J., ,

February 8-11, Seattle, US, iConference 2011

[13] Shortcut, http://kb.iu.edu/data/abhm.html. 2009

[14] GP Software, http://www.gpsoft.com.au/ 2009

http://kb.iu.edu/data/abhm.html
http://www.gpsoft.com.au/

